您好!欢迎访问半岛平台有限公司官方网站!
专注精密制造10载以上
专业点胶阀喷嘴,撞针,精密机械零件加工厂家
联系方式
13899999999
13988888888
您当前的位置: 半岛平台 > 半岛新闻 > 公司新闻

公司新闻

典型零件的加工工艺与设计[共5篇]

更新时间  2023-06-14 22:51 阅读

  1.通过对典型轴类零件的测绘、设计,提高创新与设计能力及实际动手能力; 2.通过对典型轴类零件的加工工艺路线的分析,提高学生对所学知识的综合运用能力。

  1. 根据提供的阶梯轴类零件技术要求及毛坯尺寸,设计一轴类零件并绘制出零件草图且说明其用途和零件结构工艺性。

  正确选材是机械设计的一项重要任务,它必须使选用的材料保证零件在使用过程中具有良好的工作能力,保证零件便于加工制造,同时保证零件的总成本尽可能低。优异的使用性能、良好的加工工艺性和便宜的价格是机械零件选材的最基本原则。

  选材的基本原则是所选材料的使用性能应能满足零部件使用要求,经久耐用,易于加工,成本低,即从材料的使用性能、工艺性能和经济性三个方面进行考虑。

  使用性能是保证零部件完成指定功能的必要条件。使用性能是指零部件在工作过程中应具备的力学性能、物理性能和化学性能,它是选材的最主要依据。对于机械零件,最重要的使用性能是力学性能,对零部件力学性能的要求,一般是在分析零部件的工作条件(温度、受力状态、环境介质等)和失效形式的基础上提出来的。根据使用性能选材的步骤如下:

  ① 分析零部件的工作条件,确定使用性能 ② 分析零部件的失效原因,确定主要使用性能

  2、工艺性能原则 材料的工艺性能表示材料加工的难易程度。任何零部件都要通过一定的加工工艺才能制造出来。因此在满足使用性能选材的同时,必须兼顾材料的工艺性能。工艺性能的好坏,直接影响零部件的质量、生产效率和成本。当工艺性能与使用性能相矛盾时,有时正是从工艺性能考虑,使得某些使用性能合格的材料不得不被放弃,成为选择材料的主导因素。工艺性能对大批量生产的零部件尤为重要,因为在大批量生产时,工艺周期的长短和加工费用的高低,常常是生产的关键。

  金属材料、高分子材料、陶瓷材料的工艺性能概括介绍如下: ⑴ 金属材料的工艺性能

  金属材料的工艺性能是指金属适应某种加工工艺的能力。主要是切削加工性能、材料的成型性能(铸造、锻造、焊接)和热处理性能(淬透性、变形、氧化和脱碳倾向等)。

  铸造性能主要指流动性、收缩性、热裂倾向性、偏折和吸气性等。接近共晶成分合金的铸造性能最好。铸铁、硅铝明等一般都接近共晶成分。铸造铝合金和铜合金的铸造性能优于铸铁,铸铁又优于铸钢。

  锻造性能主要指冷、热压力加工时的塑性变形能力以及可热压力加工的温度范围,抗氧化性和对加热、冷却的要求等。低碳钢的锻造性最好,中碳钢次之,高碳钢则较差。低合金钢的锻造性接近中碳钢。高碳高合金钢(高速钢、高镍铬钢等)由于导热性差、变形抗力大、锻造温度范围小,其锻造性能较差,不能进行冷压力加工。形变铝合金和铜合金的塑性好,其锻造性较好。铸铁、铸造铝合金不能进行冷热压力加工。

  切削加工性能是指材料接受切削加工的能力。一般用切削硬度、被加工表面的粗糙度、排除切屑的难易程度以及对刃具的磨损程度来衡量。材料硬度在160~230HB范围内时,切削加工性能好。硬度太高,则切削抗力大,刃具磨损严重,切削加工性下降。硬度太低,则不易断屑,表面粗糙度加大,切削加工性也差。高碳钢具有球状碳化物组织时,其切削加工性优于层片状组织。马氏体和奥氏体的切削加工性差。高碳高合金钢(高速钢、高镍铬钢等)切削加工性也差。

  焊接性能是指金属接受焊接的能力。一般以焊接接头形成冷裂或热裂以及气孔等缺陷的倾向大小来衡量。含碳量大于0.45%的碳钢和含碳量大于0.38%的合金钢,其焊接性能较差,碳含量和合金元素含量越高、焊接性能越差,铸铁则很难焊接。铝合金和铜合金,由于易吸气、散热快,其焊接性比碳钢差。热处理工艺性能主要指淬透性、变形开裂倾向及氧化、脱碳倾向等。钢和铝合金、钛合金都可以进行热处理强化。合金钢的热处理工艺性能优于碳钢。形状复杂或尺寸大、承载高的重要零部件要用合金钢制作。碳钢含碳量越高,其淬火变形和开裂倾向越大。选渗碳用钢时,要注意钢的过热敏感性;选调质钢时,要注意钢的高温回火脆性;选弹簧钢时,要注意钢的氧化、脱碳倾向。⑵ 高分子材料工艺性能

  高分子材料的加工工艺比较简单,主要是成形加工,成形加工方法也比较多。高分子材料的切削加工性能较好,与金属基本相同。但由于高分子材料的 导热性差,在切削过程中易使工件温度急剧升高,使热塑性塑料变软,使热固性塑料烧焦。

  陶瓷材料的加工工艺路线为:备料→成形加工(配料、压制、烧结)→磨加工→装配。陶瓷材料的加工工艺也比较简单,主要工艺是成形。按零部件的形状、尺寸精度和性能要求的不同,可采用不同的成形加工方法(粉浆、热压、挤压、可塑)。陶瓷材料的切削加工性差,除了采用碳化硅或金刚石砂轮进行磨加工外,几乎不能进行任何切削加工。

  选材的经济性原则是在满足使用性能要求的前提下,采用便宜的材料,使零部件的总成本,包括材料的价格、加工费、试验研究费、维修管理费等达到最低,以取得最大的经济效益。为此,材料选用应充分利用资源优势,尽可能采用标准化、通用化的材料,以降低原材料成本、减少运输、实验研究费用。选用一般碳钢和铸铁能满足要求的,就不应选用合金钢。在满足使用要求的条件下,可以铁代钢,以铸代锻、以焊代锻,有效地降低材料成本、简化加工工艺。例如用球墨铸铁代替锻钢制造中、低速柴油机曲轴、铣床主轴,其经济效益非常显著。对于要求表面性能高的零部件,可选用低廉的钢种进行表面强化处理来达到要求。

  (1)工作时主要受交变弯曲和扭转应力的复合作用;(2)轴与轴上零件有相对运动, 相互间存在摩擦和磨损;(3)轴在高速运转过程中会产生振动, 使轴承受冲击载荷;(4)多数轴会承受一定的过载载荷。

  2.根据技术要求选材,设计拟定零件机械加工工艺路线.对加工工艺路线进行分析、讨论。

  1.设计、绘制出零件草图; 2.写出零件机械加工工艺路线.对加工工艺路线进行分析。

  轴是机械加工中常见的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等,其中阶梯传动轴应用较广,其加工工艺能较全面地反映轴类零件的加工规律和共性。根据轴类零件的功用和工作条件,其技术要求主要在以下方面:

  轴类零件的主要表面常为两类:一类是与轴承的内圈配合的外圆轴颈,即支承轴颈,用于确定轴的位置并支承轴,尺寸精度要求较高,通常为IT 5~IT7;另一类为与各类传动件配合的轴颈,即配合轴颈,其精度稍低,常为IT6~IT9。

  主要指轴颈表面、外圆锥面、锥孔等重要表面的圆度、圆柱度。其误差一般应限制在尺寸公差范围内,对于精密轴,需在零件图上另行规定其几何形状精度。

  包括内、外表面、重要轴面的同轴度、圆的径向跳动、重要端面对轴心线的垂直度、端面间的平行度等。

  轴的加工表面都有粗糙度的要求,一般根据加工的可能性和经济性来确定。支承轴颈常为0.2~1.6μm,传动件配合轴颈为0.4~3.2μm。

  常用45钢,精度较高的轴可选用40Cr、轴承钢GCr15、弹簧钢65Mn,也可选用球墨铸铁;对高速、重载的轴,选用20CrMnTi、20Mn2B、20Cr等低碳合金钢或38CrMoAl氮化钢。

  ⑵ 轴类毛坯。常用圆棒料和锻件;大型轴或结构复杂的轴采用铸件。毛坯经过加热锻造后,可使金属内部纤维组织沿表面均匀分布,获得较高的抗拉、抗弯及抗扭强度。

  锻造毛坯在加工前,均需安排正火或退火处理,使钢材内部晶粒细化,消除锻造应力,降低材料硬度,改善切削加工性能。

  调质一般安排在粗车之后、半精车之前,以获得良好的物理力学性能。表面淬火一般安排在精加工之前,这样可以纠正因淬火引起的局部变形。

  一般以重要的外圆面作为粗基准定位,加工出中心孔,再以轴两端的中心孔为定位精基准;尽可能做到基准统一、基准重合、互为基准,并实现一次安装加工多个表面。中心孔是工件加工统一的定位基准和检验基准,它自身质量非常重要,其准备工作也相对复杂,常常以支承轴颈定位,车(钻)中心锥孔;再以中心孔定位,精车外圆;以外圆定位,粗磨锥孔;以中心孔定位,精磨外圆;最后以支承轴颈外圆定位,精磨(刮研或研磨)锥孔,使锥孔的各项精度达到要求。

  对于空心轴或短小轴等不可能用中心孔定位的情况,可用轴的外圆面定位、夹紧并传递扭矩。一般采用三爪卡盘、四爪卡盘等通用夹具,或各种高精度的自动定心专用夹具,如液性塑料薄壁定心夹具、膜片卡盘等。

  加工空心轴的外圆表面时,常用带中心孔的各种堵头或拉杆心轴来安装工件。小锥孔时常用堵头;大锥孔时常用带堵头的拉杆心轴。

  由CA6140车床主轴零件简图可知,该主轴呈阶梯状,其上有安装支承轴承、传动件的圆柱、圆锥面,安装滑动齿轮的花键,安装卡盘及顶尖的内外圆锥面,联接紧固螺母的螺旋面,通过棒料的深孔等。下面分别介绍主轴各主要部分的作用及技术要求:

  ⑴ 支承轴颈。支承轴颈尺寸精度为IT5。因为主轴支承轴颈是用来安装支承轴承,是主轴部件的装配基准面,所以它的制造精度直接影响到主轴部件的回转精度。主轴二个支承轴颈A、B圆度公差为0.005mm,径向跳动公差为0.005mm;而支承轴颈1∶12锥面的接触率≥70%;表面粗糙度Ra为0.4.⑵ 端部锥孔。

  主轴端部内锥孔(莫氏6号)对支承轴颈A、B的跳动在轴端面处公差为0.005mm,离轴端面300mm处公差为0.01 m;硬度要求45~50HRC。该锥孔是用来安装顶尖或工具锥柄的,其轴心线必须与两个支承轴颈的轴心线严格同轴,否则会使工件(或工具)产生同轴度误差。mm;锥面接触率≥70%;表面粗糙度Ra为0.4 ⑶ 端部短锥和端面。

  头部短锥C和端面D对主轴二m。它是安装卡盘的定位面。为保证卡盘的定心精度,该圆锥面必须与支承轴颈同轴,而端面必须与主轴的回转中心垂直。个支承轴颈A、B的径向圆跳动公差为0.008mm;表面粗糙度Ra为0.8 ⑷ 空套齿轮轴颈。

  空套齿轮轴颈对支承轴颈A、B的径向圆跳动公差为0.015 mm。由于该轴颈是与齿轮孔相配合的表面,对支承轴颈应有一定的同轴度要求,否则引起主轴传动啮合不良,当主轴转速很高时,还会影响齿轮传动平稳性并产生噪声。

  ⑸ 螺纹。主轴上螺旋面的误差是造成压紧螺母端面跳动的原因之一,所以应控制螺纹的加工精度。当主轴上压紧螺母的端面跳动过大时,会使被压紧的滚动轴承内环的轴心线产生倾斜,从而引起主轴的径向圆跳动。

  主轴加工的主要问题是如何保证主轴支承轴颈的尺寸、形状、位置精度和表面粗 4

  糙度,主轴前端内、外锥面的形状精度、表面粗糙度以及它们对支承轴颈的位置精度。

  主轴支承轴颈的尺寸精度、形状精度以及表面粗糙度要求,可以采用精密磨削方法保证。磨削前应提高精基准的精度。

  保证主轴前端内、外锥面的形状精度、表面粗糙度同样应采用精密磨削的方法。为了保证外锥面相对支承轴颈的位置精度,以及支承轴颈之间的位置精度,通常采用组合磨削法,在一次装夹中加工这些表面,机床上有两个独立的砂轮架,精磨在两个工位上进行,工位Ⅰ精磨前、后轴颈锥面,工位Ⅱ用角度成形砂轮,磨削主轴前端支承面和短锥面。

  主轴锥孔相对于支承轴颈的位置精度是靠采用支承轴颈A、B作为定位基准,而让被加工主轴装夹在磨床工作台上加工来保证。以支承轴颈作为定位基准加工内锥面,符合基准重合原则。在精磨前端锥孔之前,应使作为定位基准的支承轴颈A、B达到一定的精度。主轴锥孔的磨削一般采用专用夹具,夹具由底座

  1、支架2及浮动夹头3三部分组成,两个支架固定在底座上,作为工件定位基准面的两段轴颈放在支架的两个V形块上,V形块镶有硬质合金,以提高耐磨性,并减少对工件轴颈的划痕,工件的中心高应正好等于磨头砂轮轴的中心高,否则将会使锥孔母线呈双曲线,影响内锥孔的接触精度。后端的浮动卡头用锥柄装在磨床主轴的锥孔内,工件尾端插于弹性套内,用弹簧将浮动卡头外壳连同工件向左拉,通过钢球压向镶有硬质合金的锥柄端面,限制工件的轴向窜动。采用这种联接方式,可以保证工件支承轴颈的定位精度不受内圆磨床主轴回转误差的影响,也可减少机床本身振动对加工质量的影响。

  主轴外圆表面的加工,应该以顶尖孔作为统一的定位基准。但在主轴的加工过程中,随着通孔的加工,作为定位基准面的中心孔消失,工艺上常采用带有中心孔的锥堵塞到主轴两端孔中,如图6-2所示,让锥堵的顶尖孔起附加定位基准的作用。

  主轴加工中,为了保证各主要表面的相互位置精度,选择定位基准时,应遵循基准重合、基准统一和互为基准等重要原则,并能在一次装夹中尽可能加工出较多的表面。

  由于主轴外圆表面的设计基准是主轴轴心线,根据基准重合的原则考虑应选择主轴两端的顶尖孔作为精基准面。用顶尖孔定位,还能在一次装夹中将许多外圆表面及其端面加工出来,有利于保证加工面间的位置精度。所以主轴在粗车之前应先加工顶尖孔。

  为了保证支承轴颈与主轴内锥面的同轴度要求,宜按互为基准的原则选择基准面。如车小端1∶20锥孔和大端莫氏6号内锥孔时,以与前支承轴颈相邻而它们又是用同一基准加工出来的外圆柱面为定位基准面(因支承轴颈系外锥面不便装夹);在精车各外圆(包括两个支承轴颈)时,以前、后锥孔内所配锥堵的顶尖孔为定位基面;在粗磨莫氏6号内锥孔时,又以两圆柱面为定位基准面;粗、精磨两个支承轴颈的1∶12锥面时,再次用锥堵顶尖孔定位;最后精磨莫氏6号锥孔时,直接以精磨后的前支承轴颈和另一圆柱面定位。定位基准每转换一次,都使主轴的加工精度提高一步。

  主轴加工工艺过程可划分为三个加工阶段,即粗加工阶段(包括铣端面、加工顶尖孔、粗车外圆等);半精加工阶段(半精车外圆,钻通孔,车锥面、锥孔,钻大头端面各孔,精车外圆等);精加工阶段(包括精铣键槽,粗、精磨外圆、锥面、锥孔等)。在机械加工工序中间尚需插入必要的热处理工序,这就决定了主轴加工各主要表面总是循着以下顺序的进行,即粗车→调质(预备热处理)→半精车→精车→淬火-回火(最终热处理)→粗磨→精磨。综上所述,主轴主要表面的加工顺序安排如下:

  外圆表面粗加工(以顶尖孔定位)→外圆表面半精加工(以顶尖孔定位)→钻通孔(以半精加工过的外圆表面定位)→锥孔粗加工(以半精加工过的外圆表面定位,加工后配锥堵)→外圆表面精加工(以锥堵顶尖孔定位)→锥孔精加工(以精加工外圆面定位)。

  当主要表面加工顺序确定后,就要合理地插入非主要表面加工工序。对主轴来说非主要表面指的是螺孔、键槽、螺纹等。这些表面加工一般不易出现废品,所以尽量安排在后面工序进行,主要表面加工一旦出了废品,非主要表面就不需加工了,这样可以避免浪费工时。但这些表面也不能放在主要表面精加工后,以防在加工非主要表面过程中损伤已精加工过的主要表面。

  对凡是需要在淬硬表面上加工的螺孔、键槽等,都应安排在淬火前加工。非淬硬表面上螺孔、键槽等一般在外圆精车之后,精磨之前进行加工。主轴螺纹,因它与主轴支承轴颈之间有一定的同轴度要求,所以螺纹安排在以非淬火-回火为最终热处理工序之后的精加工阶段进行,这样半精加工后残余应力所引起的变形和热处理后的变形,就不会影响螺纹的加工精度。

  自动测量装置,作为辅助装置安装在机床上。这种检验方式能在不影响加工的情况下,根据测量结果,主动地控制机床的工作过程,如改变进给量,自动补偿刀具磨损,自动退刀、停车等,使之适应加工条件的变化,防止产生废品,故又称为主动检验。主动检验属在线检测,即在设备运行,生产不停顿的情况下,根据信号处理的基本原理,掌握设备运行状况,对生产过程进行预测预报及必要调整。在线检测在机械制造中的应用越来越广。

  单件小批生产中,尺寸精度一般用外径千分尺检验;大批大量生产时,常采用光滑极限量规检验,长度大而精度高的工件可用比较仪检验。表面粗糙度可用粗糙度样板进行检验;要求较高时则用光学显微镜或轮廓仪检验。圆度误差可用千分尺测出的工件同一截面内直径的最大差值之半来确定,也可用千分表借助V形铁来测量,若条件许可,可用圆度仪检验。圆柱度误差通常用千分尺测出同一轴向剖面内最大与最小值之差的方法来确定。主轴相互位置精度检验一般以轴两端顶尖孔或工艺锥堵上的顶尖孔为定位基准,在两支承轴颈上方分别用千分表测量。

  [1] 郑修本.机械制造工艺学[M].第2版.北京:高等教育出版社,2011.[2] 黄健求.机械制造技术基础[M].第2版.北京:机械工业出版社,2011.[3] 周泽华.金属切削原理[M].上海:上海科学技术出版社,1984.[4] 唐健生.金身切削与刀具[M].武汉:武汉理工大学出版社,2009.

  该零件是用三孔形成,中间孔为支力点,常常靠两头的小孔来传递动力作用,其中作为支力点的大孔为Φ90H6,小孔及耳部分别为Φ35H6和Φ25H6。

  零件的主要技术要求为:连杆不得有裂纹、夹渣等缺陷。热处理后226~271HBS。1.2基准的选择

  零件材料为45钢,考虑零件形状,应用模锻毛坯。由于零件是中批量生产,所以设备要充分利用,以减少投资、降低成本。故确定工艺的基本特征:毛坯采用效率高和质量较好的制造方法:拟定成的工艺过程卡和机械加工工序卡片。

  由于该零件的尺寸不大,而且工件上有许多表面不切削加工,故模锻。毛坯的技术要求:

  由于该零件多数尺寸及形位公差以Φ90H6孔及端面为设计基准,因此首先将Φ60H6端面加工好,为后续加工基准。根据粗、精基准选择的原则,确定各加工表面的基准。(1)Φ90H6孔端面:零件外轮廓(粗基准)

  (2)Φ35H6孔及Φ90H6孔端面(粗加工):Φ90H6孔端面(3)Φ35H6孔及Φ90H6孔端面(精加工):Φ90H6孔端面(4)Φ25H6孔端面:Φ90H6孔端面(5)三孔:Φ90H6孔端面 2.拟定接写加工工艺路线

  该三孔连杆零件加工表面:大头孔、小头孔及耳部端面。根据各加工表面的精度要求和粗糙度要求。

  Φ90H6孔加工路线为:粗镗—精镗。加工方法为镗。Φ35H6孔加工路线为:钻—粗镗—精镗,加工方法为钻。Φ25H6孔:钻—粗镗—精镗,加工方法为钻。

  检验各部尺寸及精度,探伤检查无损探伤检查。零件有无裂纹及夹渣等 工序十一

  检验各部尺寸及精度,探伤检查无损探伤检查,零件有无裂纹及夹渣等 工序十一

  (一)是按工序分散原则组织工序,铣大头孔面可在普通机床上用V型块夹紧,装夹加工,Φ35H6孔与Φ25H6孔可在普通钻床上钻模加工,其精度可在镗床上达到。优点是可以采用通用机床和通用夹具及专用夹具。缺点是工艺路线长,增加了工件的装夹次数。由与零件的形状不规则,加工面分散,而且生产纲领已确定。中批量生产,可以尽量工序集中来提高生产效率。

  (二)是按工序集中组织原则,其优点是工艺路线短,减少工件装夹次数,易与保证加工面的相互位置精度,需要机床数量少,减少工件在工序间的运输,减少辅助时间和准备时间。

  (三)也按工序集中原则组织工序其优点是路线短,所用机床数量少,但起先空后面加工,不易保证位置精度。

  卧式镗床,硬质合金车刀,组合夹具,0—200/0.02mm游标卡尺 工序十二

  机械制造工艺课程设计是培养学生独立思考和协同工作能力的重方法。理论知识固然重要,但实践才是检验真理的唯一标准。作为学生,我们不只是学。学以致用才是最终目标,也是老师对我们的期望。通过三个礼拜的摸索,我们加强了对CAD绘图软件的学习和巩固,以及增加了在查手册、找资料、解决问题的方法等方面的能力。此外,也在潜移默化中加强了对课本上理论知识的正确认识。当然在此过程中少不了指导老师柴京富的领导,师傅领进门,修行在个人,期间我们深深感受到了您作为老师的职责。您始终让我们独立思考,让我们在方法上得到了锻炼。在此,我非常感谢柴老师您对我们的悉心教导和孜孜教诲。我定不辜负您对我们的期望。相信我们以后还能在您的领导下搞课程设计!

  功用——支承传动件、传递扭矩或运动、承受载荷,一定的回转精度 结构——回转体零件,长度大于直径

  光轴、阶梯轴、空心轴、异形轴(曲轴、凸轮轴、偏心轴和花键轴等)刚性轴(L/d≤12)挠性轴(L/d>12)

  几何形状精度(圆度、圆柱度等)——公差的1/2,1/4 相互位置精度(同轴度)——0.01~0.03mm,0.001~0.005mm 表面粗糙度——Ra0.2~0.8μm,Ra0.8~3.2μm

  中等精度和转速较高——40Cr等合金结构钢,调质和表面淬火 高精度轴——轴承钢GCr15、弹簧钢65Mn,调质和表面淬火 高转速和重载荷——20CrMnTi、20Cr,38CrMoAl,渗碳淬火或氮化 结构复杂(曲轴)——HT400、QT600、QT450、QT400

  (1)车削外圆各个加工阶段——粗车、半精车、精车、精细车(2)细长轴外圆表面的车削——长径比(L/D>20)1)车削特点 ①刚性差,易弯曲变形和振动

  ②弹性顶尖,避免受热弯曲变形 ③跟刀架,提高刚度,仔细调整则 ④大主偏角车刀,κr =75°~93° ⑤反向进给切削,减少弯曲变形

  精度IT6~7级,Ra 0.2~0.8μm,位置精度不高,不能加工圆周不连续工件 生产率高,可实现自动磨削,适合于大批量生产。

  Ra 0.2~0.8μm,最高Ra 0.02μm,表面不烧伤。弹性磨削,切削力小,适宜加工细长轴等零件。设备简单,成本低,安全,生产率高

  精密磨削——Ra 0.1~0.05μm 超精密磨削——Ra 0.05~0.025μm 镜面磨削——Ra 0.01μm 实质——磨粒微刃——等高性——参加磨削的磨粒多,微细切屑半钝化磨粒——摩擦抛光 钝化期——挤压抛光

  油石—加压力—振动—纵向进给,工件低速回转——不重复轨迹①强烈切削阶段——压强大,油膜被破坏,切削作用强烈 ②正常切削阶段——压强降低,切削作用减弱 ③微弱切削阶段——压强更低,摩擦抛光作用

  磨粒摩擦抛光,交叉网纹——Ra 0.01~0.1μm,速度低,压力小,发热少,表面不烧伤,不能纠正形状和位置误差

  机械切削作用——磨粒—受压—刮擦和挤压—切除微细材料 物理作用——磨粒局部压力大—高温、挤压作用 化学作用——研磨剂—表面氧化变软,加速研磨 运动较复杂—轨迹不重复,Ra 0.01~0.2μm 提高尺寸形状精度 不提高位置精度设备简便

  降低表面粗糙度值(Ra 0.05~0.4μm),不提高形状和位置精度 金属晶粒变细,纤维状—残余压应力—抗疲劳强度、耐磨性和耐腐蚀性高 设备简单,生产率高,工艺范围广。适用于塑性材料

  ①支承轴颈A、B:圆度、圆跳动0.005,接触率≥70%,IT5级,Ra0.4 ②莫氏锥孔:圆跳动,近0.005,远0.01,接触率≥70%,Ra0.4,淬硬 ③短锥C和端面D:圆跳动0.008,Ra0.8,淬硬 ④配合轴颈:尺寸IT5~6级,圆跳动0.015 ⑤其他表面:定位轴肩与中心线的垂直度,螺纹与中心线钢,毛坯为模锻件,大批量生产 主轴加工工艺过程略

  支承轴颈定位——基准重合—磨锥孔——保证相互位置精度 中心孔和支承轴颈——互为基准、反复加工的原则 工艺过程实质——定位基准的准备和转换的过程

  以主要表面(特别是支承轴颈)的加工为主,分: 粗加工阶段——调质前的工序

  精加工阶段——表面淬火后的工序,其它次要表面适当穿插其中(3)合理安排热处理工序

  毛坯锻造——正火——消除应力,改善切削性能 粗加工——调质—提高力学性能,为表面淬火准备 半精加工——表面淬火——提高耐磨性(4)加工顺序的安排

  锻造→正火→车端面钻中心孔→粗车→调质→半精车 →精车→表面淬火→粗、精磨外圆表面→磨锥孔

  通孔——调质、半精车后—减少弯曲变形,定位准确,主轴壁厚均匀 花键、键槽——精车或粗磨后—免断续切削的振动,保护刀具 螺纹——局部淬火后——淬火变形会影响螺纹和支承轴颈的同轴度(6)主轴锥孔的磨削

  结构特点——同轴度较高的内外回转面;壁薄易变形;长度大于直径 2.套筒类零件的技术要求

  形状精度在公差内,为1/2~1/3,圆柱度公差 Ra 1.6~0.2,0.04 外圆——尺寸IT6~7级,形状精度在公差内,Ra3.2~0.8 内孔外圆同轴度——0.01~0.05。端面与轴线.套筒类零件的材料及毛坯

  钢、铸铁、粉末冶金、铜及其合金、尼龙和工程塑料等 双金属结构——在钢或铸铁套的内壁上浇铸巴氏合金 毛坯——孔径小——热轧或冷拉棒料,也用实心铸件

  自定位,浮动联接‘不能修正孔的位置误差 不宜用于台阶孔、盲孔、短孔和具有断续表面的孔

  一次安装下连续钻、扩、铰加工——避免安装误差,快速换刀,生产率高(4)镗孔

  纠正位置偏差能力强,位置精度高。刀杆刚性差,易振动,生产率低 用于单件小批生产

  砂轮与工件接触面积大,排屑和散热困难,冷却不便,工件易烧伤;砂轮磨损快,需经常修整更换

  位置精度高,应用广(淬硬孔、盲孔、大直径孔、短精密孔、断续孔)不适用于磨削有色金属

  砂条(珩磨头)—旋转运动和往复运动,加压力—轨迹为交叉而不重复的网纹 特点:磨粒多,磨削力小,速度低,发热少,不烧伤,变形层薄,表面质量好

  浮动联结,自定位,不纠正孔的相互位置精度 往复速度高,磨粒多,生产率高。

  应用广,加工铸铁件、淬火、不淬火钢件、青铜件等,不宜加工韧性金属 加工孔径ø5~500mm,深径比达10以上

  技术要求:内孔B、C——尺寸J7,圆柱度0.01,同轴度φ0.012,跳动0.01 外圆——尺寸j7,圆柱度0.003,Ra0.63 材料45钢,毛坯为棒料,成批生产。工艺特点:

  大多数工序中用——基准统一,保证内外圆的相互位置精度 互为基准,反复加工,相互位置精度逐渐提高

  特点:壁薄,加工要求高—尺寸φ70H6,圆柱度0.04,直线。外圆尺寸h6 毛坯为无缝钢管,成批生产。

  软爪夹一端——避免夹紧变形,另一端——顶尖——精车外圆 外圆——中心架——找正内孔——镗内锥面。

  1)一次装夹完成——无装夹误差,位置精度高—工序集中——小尺寸简单套类 2)先终加工孔,后终加工外圆——夹具简单,定心精度高,位置精度高,应用广3)先终加工外圆,后终加工孔——夹具复杂——高精度的定心夹具

  1)切削力和切削热——粗精分开——变形可在精加工纠正 2)夹紧力——①改变夹紧力方向—径向改轴向——工艺螺纹

  ②夹紧力均布—过渡套、液性塑料定心夹具、弹性薄膜卡盘、修整过的三爪自定心卡盘、软爪

  功用:基础件——保持零部件正确的位置关系,协调运动 结构:复杂,壁薄、厚不均匀,内部腔形;

  支承孔:尺寸IT6〜7,形状精度为孔尺寸公差的一半,Ra1.6〜0.4;

  大批量——金属模机器造型——精度高,余量小 铝合金箱体——压铸——精度很高,余量很小

  宽刃精刨代刮——速度低,余量小,变形小,Ra1.6~0.8,精度高,生产率高 11

  特点:速度高、进给量小、IT5~9,Ra1.6~0.2——半精加工和精加工 方法:周磨——发热小,排屑与冷却好,精度高,间断进给,生产率低

  基准统一优先——保证互位置精度,减少夹具设计制造量,降低成本 基准重合——避免基准不重合误差,提高相互位置精度

  定位准确可靠,夹具结构简单,工件装卸方便 —单件和中小批生产中应用广 影响定位面上的加工。

  定位稳定可靠,夹紧方便,易于实现自动定位和自动夹紧 成批以上生产,用组合机床与自动线加工——应用多 两孔定位误差——影响位置精度

  加工——便于装调刀具、更换导套、测量孔径、观察加工和加切削液 夹具结构简单,刚性好,工件装卸方便,加工精度提高,生产率高

  镗杆刚度提高,多刀切削;定位夹紧迅速,生产率高。镗模精度高,制造周期长,成本高,用于成批及大量生产 单件小批生产,精度高,结构复杂的箱体孔系——也采用镗模法

  孔精度IT7,Ra0.8〜1.6;孔距精度±0.05 同轴度和平行度,0.02〜0.03,0.04〜0.05,坐标法:中小批生产——数控镗铣床、加工中心

  功用——按一定速比传递运动和动力 结构——齿圈——直齿、斜齿、人字齿 轮体——盘类、套类、轴类、齿条等

  2)传递运动平稳性——一齿内转角误差小,瞬时变化小,减少振动冲击噪声 3)载荷分布均匀性——齿面接触良好,载荷分布均匀,以免齿面磨损 4)传动侧隙合理性——齿面间有间隙,贮存润滑油,补偿变形,以免卡死烧伤 国标GB10095-88《渐开线~8——中等精度,9~12——低精度 分为三个公差组:

  Ⅰ公差组:Ft—切向综合误差,Ft—径向综合误差,Fp—齿距累积误差,Fpk—K个齿距累积误差,Fr—齿圈径向跳动公差,FW—公法线长度变动公差

  Ⅱ公差组:ft—一齿切向综合误差,ft—一齿径向综合误差,ff—齿形公差,fpt——齿距极限偏差,fpb——基圆齿距极限偏差,ff——螺旋线波度公差

  Ⅲ公差组:F—齿向公差,Fb—接触线公差,Fpx—轴向齿距的法向极限偏差。

  用C、D、E、F、G、H、J、K、L、M、N、P、R、S表示 齿厚的上、下偏差分别用两种字母表示

  一般精度齿轮——中碳钢、中碳合金钢(如45、40Cr)—调质或表面淬火 低速重载齿轮——低碳合金钢(如20CrMnTi)—渗碳淬火、碳氮共渗 非传力齿轮——不淬火钢、铸铁、工程塑料等(2)齿轮的毛坯

  锻件—强度高、耐磨耐冲击的齿轮,批量小尺寸大—自由锻,批量大——模锻 铸件—铸钢件—结构复杂、尺寸大的齿轮

  m≤8——盘状铣刀 m>8——指状铣刀 精度低,IT9,Ra6.3~3.2,生产率低

  夹具、齿坯误差——齿轮偏心——径向误差 机床传动链误差——展成运动不准确——切向误差

  硬质合金滚刀——硬齿面半精滚或精滚,精度7级,生产率高 3.插齿——相当于一对圆柱齿轮相啮合

  精度7~8级,Ra1.6 往复运动,有空行程,刚度差,生产率较低 多用于中小模数齿轮的加工

  插齿刀制造刃磨方便,精确,齿形误差小——传递运动平稳性比滚齿高 往复频繁,导轨磨损,刀具刚性差,齿向误差大——承受载荷均匀性比滚齿差 轮齿被切削的次数多,即包络线多——插齿齿面粗糙度Ra值较小

  硬质合金插齿刀——加工淬硬齿轮,精度6~7级,Ra0.4~0.8,工艺简单,成本低 4.剃齿——相当于一对斜齿轮空间交叉啮合

  工艺特点:精度6~7级,Ra0.8~0.2,生产率高,机床结构简单,操作方便

  高性能高速钢刀具(含钴、钼成分高)——硬齿面精加工,精度7级,Ra0.8~1.6 5.珩齿——与剃齿相似

  对传递运动准确性误差修正能力较差 对承受载荷均匀性误差有一定的修正能力 表面粗糙度Ra0.8~0.2,不烧伤,表面质量好

  工艺特点:珩齿设备简单,成本低,生产率高——成批大量中淬火后齿形的精加工

  工艺特点:高精度齿面加工,精度4~6级,最高3级,Ra0.8~0.2,可磨淬硬齿面

  1)碟形砂轮磨齿——两片砂轮倾斜安装,构成齿条的齿面,精度3~5级,生产率低2)锥形砂轮磨齿——砂轮修整成假想齿条的齿廓,精度5~6级,生产率较高 3)蜗杆砂轮磨齿——砂轮蜗杆状,运动与滚齿相同,精度4~5级,生产率高

  盘类齿轮——内孔和一端面定位——基准重合——专用心轴定位精度高——成批生产

  加工工艺——轮体结构、技术要求和生产类型 盘类齿轮的齿坯加工: 1)大批量——多刀车——拉——多刀车

  ②一次安装精车内孔和基准端面,保证端面对内孔的圆跳动要求 ③内孔在心轴定位——精车外圆及端面

  ①卧式车床——粗车齿坯外圆、端面和花键底孔 ②花键底孔定位,端面支承——拉花键孔 ③花键孔在心轴定位——精车外圆、端面

  硬滚、硬插、硬剃:滚齿—齿端加工—齿面热处理—修正基准—硬滚 5级以上:磨齿

  在一次装夹中加工出全部外圆及有关端面,又符合基准统一的原则,所以顶尖在轴类零件加工中上重要的定位元件,起主要起定位作用。

  当加工高精度轴类零件时,中心孔的形状误差会影响到加工表面的加工精度,另一方面,当零件进行热处理后,中心孔表面会出现一定的变形,因此,要在各个加工阶段对中心孔进行修研。

  修研的方法有三种:用硬质合金顶尖修研;用油石、橡胶砂轮或铸铁顶尖修研;用中心孔磨床磨削。

  答:机床主轴一般是结构复杂,精度要求较高,其机械加工工艺路线为:备料-正火-车端面和钻中心孔-粗车各外圆-调质-半精车-精车-表面淬火-粗、精磨外圆表面-磨内锥孔等几个主要工序。

  3.分析主轴加工工艺过程中如何体现基准统一、基准重合、互为基准的原答:主轴在加工过程中,各主要加工表面的精加工均采用锥心轴或锥堵等代则?它们在保证主轴的精度要求中都起了什么重要作用?

  替内孔轴线,采用两顶尖支承定位。一般在精加工完两端的锥孔后,两端用锥堵中心孔定位作为定位基准,这样充分体现了基准统一和基准重合的原则; 而在精加工两端锥堵时,又是以轴上的精加工的主要加工外圆作为基准的,体现了互为基准的原则。通过采用这些加工措施,充分保证了主轴的轴颈相对于支承轴颈的同轴度和端面对轴心线的垂直度等相互位置精度。

  答:主轴锥孔对主轴支承轴颈的径向跳动,是机床的主要精度指标,因而锥孔的磨削是主轴加工的关键工序之一。在精磨主轴内锥孔时在专用的磨主轴锥孔夹具上进行。如图1所示。

  前后支架和底座固定在一起前支架由带锥度的巴氏合金衬套支撑主轴工件前锥轴颈,后支架由镶有尼龙的顶块支撑工件。必须保证工件轴线与砂轮轴线等高,以免将锥孔母线磨成了曲线。浮动夹头的锥柄装在磨床主轴的锥孔内,工件尾端夹于卡头弹性套内,用弹簧把弹性套连同工件向左拉,并通过钢球压向镶有硬质合金的锥柄端面以限制工件的轴向窜动。

  5.箱体零件的结构特点及主要技术要求有哪些?这些要求对保证箱体零件答:箱体是机器中箱体部件的基础零件,由它将有关轴、套和齿轮等零件组在机器中的作用和机器的性能有何影响?

  装在一起,使其保持正确的相互位置关系,彼此按照一定的传动关系协调运动。箱体零件的结构特点是:构造比较复杂,箱壁较薄且不均匀,内部呈腔形,在箱壁上既有许多精度较高的轴承支承孔和平面,也有许多精度较低的紧固孔。箱体类零件需要加工的部位较多,加工的难度也较大。其主要技术要求有:(1)支承孔的精度和表面粗糙度。箱体上轴承支承孔应有较高的尺寸精度和形状精度以及较小的表面粗糙度值,否则,将影响轴承外圈与箱体上孔的配合精度,使轴的旋转精度降低,若是机床主轴支承孔,还会影响其加工精度。

  (2)支承孔之间的孔距尺寸精度及相互位置精度。箱体上有齿轮啮合关系的相邻孔之间,应有一定的孔距尺寸精度及平行度的要求,否则会使齿轮的啮合精度降低,工作时产生噪声和振动,并降低齿轮使用寿命,箱体上同轴线孔应有一定的同轴度,否则不仅给轴的装配带来困难,还会使轴承磨损加剧,温度升高,影响机器的工作精度和正常运转。

  (3)主要平面精度和表面粗糙度。箱体的主要平面是装配基准面和加工中的定位基准面,它们应有较高的平面度和较小的表面粗造度数值,否则将影响箱体与机器总装时的相对位置和接触刚度以及加工中的定位精度。

  (4)支承孔与主要平面的尺寸精度和相互位置精度。箱体上支承孔对装配基面要有一定的尺寸精度和平行度要求,对端面要有一定的垂直度要求。如果车床床头箱主轴孔轴心线对装配基面在水平面内有偏斜,则加工时会使工件产生锥度。

  只有满足了这些技术要求才能保证箱体上孔的配合精度、相对位置精度和接6.孔系加工方法有哪几种?举例说明各加工方法的特点及其适用性。答:孔系是指一系列具有相互位置精度要求的孔.箱体零件的孔系主要有平行(1)平行孔系的加工。平行孔系的主要技术要求是各平行孔轴心线之间及中心线与基准面之间的尺寸精度和相互位置精度。加工中常用找正法,镗模法和坐标法。找正法是在通用机床上加工箱体类零件使用的方法,可分为划线找正法,心轴块规找正法和样板找正法,适用于单件小批量生产。用样板找正法时,样板上孔系的孔距精度比工件孔系的孔距精度高,孔径比工件的孔径大。将样板装在工件上,用装在机床主轴上的千分表定心器,按样板逐一找正机床主轴的位置进行加工。该方法找正快,不易出错,工艺装备简单,孔距精度可达上±0.05 mm,常用于加工较大工件。

  用镗模法加工孔系时,工件装夹在镗模上,镗杆由模板上的导套支承。加触刚度,使轴装配较为容易。

  工时,镗杆与机床主轴浮动连接。影响孔系的加工精度主要是镗模的精度。用镗模法孔距精度较高,这种方法定位夹紧迅速,不需找正,生产效率高,普遍应用于成批和大量生产中。

  坐标法镗孔是在普通镗床、立式铣床和坐标镗床上,借助测量装置。按孔系间相互位置的水平和垂直坐标尺寸,调整主轴的位置,来保证孔距精度的镗孔方法。孔距精度取决于主轴沿坐标轴移动的精度。可用于加工孔距精度要求特别高的孔系,如镗模、精密机床箱体等零件的孔系。

  (2)同轴孔系加工。同轴孔系的主要技术要求是孔的同轴度。保证孔的同轴度有如下方法:1)镗模法;在成批生产中,采用镗模加工,其同轴度由镗模保证。2)利用已加工过的孔作支承导向法;这种方法是在前壁上加工完毕的孔内装入导向套,支承和引导镗杆加工后壁上的孔,3)利用镗床后立柱上的导向套支承镗杆法;用这种方法加工时镗杆为两端支承,刚度好,但后立柱导套位置的调整复杂,且需较长的镗杆。该方法适用于大型箱体的孔系加工。4)采用调头镗法。当箱体箱壁距离较大时,可采用调头锤法。即工件一次安装完毕,镗出一端孔后,将工件台回转1800,再镗另一端的同轴线孔。这种加工方法锤杆悬伸短,刚性好,但调整工作台的回转时,保证其回转精度较麻烦。(3)交叉孔系的加工。交叉孔系的主要技术要求是各孔的垂直度,主要采用机床本身的回转精度和光学瞄准器定位等方法加工。

  答:为了便于安装,箱体一般采用分离式的。分离式箱体的主要加工部位有:轴承支承孔,接合面、端面及底面等。

  整个加工过程分为两个大的阶段,先对箱盖和底座分别进行加工,然后对装配好的箱体进行整体加工。第一阶段主要完成平面,连接孔、螺纹孔和定位孔的加工,为箱体的对合装配做准备。第二阶段为在对合装配后的箱体上加工轴承孔及端面,在两个阶段之间安排钳工工序,将箱盖与底座合成箱体,用锥销定位,使其保持一定的相互位置,以保证轴承孔的加工精度和拆装后的精度。这样安排符合箱体加工中的先加工平面、后加工支承孔的原则,也符合粗加工与精加工分开的原则,可以保证箱体轴承孔的加工精底和轴承孔的中心高等尺寸达到要求。

  为了保证达到这些要求,加工底座的结合面时,应以底面为精基准,这样可使结合面加工时的定位基准与设计基准重台,有利于保证结合面至底面的尺寸精度和位置精度。箱体对合装配后加工轴承孔时,仍以底面为主要定位基准,并与底面上的两定位销孔组成一面两孔的定位方式,既符合基准统一的原则,也符合基准重合的原则,有利于保证轴承孔轴心线与结合面的重合度和与安装基面的尺寸精度及位置精度。

  答:为防止薄壁套筒受力变形,在加工时要注意以下几点:①为减少切削力和切削热的影响,粗、精加工应分开进行。使粗加工产生的热变形在精加工中可以得到纠正。并应严格控制精加工的切削用量,以减少零件加工时的变形。

  ②减少夹紧力的影响,工艺上可以采取以下措施:改变夹紧力的方向,即变径向夹紧为轴向夹紧,使夹紧力作用在工件刚性较好的部位;当需要径向夹紧时,为减少夹紧变形和使变形均匀,应尽可能使径向夹紧力沿圆周均匀分布,加工中可用过渡套或弹性套及扇形夹爪来满足要求;或者制造工艺凸边或工艺螺纹,以减少夹紧变形。

  ③为减少热处理变形的影响,热处理工序应置于粗加工之后、精加工之前,以便使热处理引起的变形在精加工中得以纠正。

  9.深孔加工中首先应解决哪几个主要问题,两种排屑方式的特点如何? 答:钻深孔时,要从孔中排出大量的切屑,同时又要向切削区注放足够的冷却润滑液。普通钻头由于排屑空间有限,冷却液进出通道没有分开,无法注入高压冷却液。所以,冷却、排屑是相当困难的。另外,孔越深,钻头就越长,刀杆刚性也越差,钻头易产生歪斜,影响加工精度与生产率的提高。所以,深孔加工中必须首先解决排屑、导向和冷却毫米几个主要问题,以保证钻孔精度。保持刀具正常工作,提高刀具寿命和生产率。

  常用的排屑方式有外排屑和内排屑两种,外排屑时,刀具结构简单,不需用专用设备与专用辅具,排屑空间较大,但切屑排出时易划伤孔壁。内排屑时,将增大刀杆外径,提高刀杆刚度,有利于提高进给量和生产率。冷却排屑效果较好,刀杆稳定,可提高孔的精度和降低孔的表面粗糙度值。

  答:滚齿用于加工精度在7~9级,最高可达4~5级,齿面Ra为1.6~0.4微米的外齿轮;插齿机主要加工精度在7~8,最高可达6,齿面Ra为1.6~0.2米的外齿轮的双连具轮和内齿轮。滚齿是在滚齿机上进行,主要用于滚切直齿和斜齿外啮合圆柱齿轮及蜗轮的轮齿。滚齿的加工精度一般在7~9级,最高可达4~5级,齿面粗糙度值Ra可达1.6~0.4μm。滚齿可作为剃齿或磨齿等齿形精加工之前的粗加工和半精加工。

  插齿是在插齿机上进行,主要用于加工直齿圆柱齿轮的轮齿,尤其适合加工内齿轮和多联齿轮的轮齿,还可加工斜齿轮、人字齿轮、齿条、齿扇及特殊齿形的轮齿。插齿加工精度一般在7~8级,最高可达6级,齿面粗糙度值Ra可达1.6~0.2μ m,可作为齿轮淬硬前的粗加工和半精加工。加工较大模数齿轮时,插齿因插齿机和插齿刀的刚性较差,切削时又有空行程存在,生产率比滚齿低;但加工较小模数齿轮,尤其是宽度较小的齿轮时,其生产率不低于滚齿。

  11.剃齿原理是什么?它能提高齿轮工件哪些方面的精度? 答:剃齿加工原理相当于一对斜齿轮副的啮合过程,能进行剃齿切削的必要条件是齿轮副的齿面间有相对滑移,相对滑移的速度就是剃齿的切削速度。剃齿刀在加工过程中,在齿面上产生相对滑动,从齿面上刮下很薄的切屑,在啮合过程中逐渐将余量切除。

  剃齿能校正前一工序中留下的齿形误差、基节误差、相邻周节误差和齿圈的12.分析珩齿与磨齿有什么异同点?

  答:珩齿的加工原理与剃齿相同,珩齿可修正齿形淬火后引起的变形,减小径向圆跳动。

  齿面表面粗糙度值,提高相邻周节的精度,并能修正齿轮的短周期分度误差,加工成本低、效率高。磨齿是精加工精密齿轮、特别是加工淬硬的精密齿轮的常用方法,对磨前齿轮的误差或热处理变形有较强的修正能力,但生产率比珩齿低得多,加工成本高,据齿面渐开线形成原理的不同,磨齿可分为成形磨齿和展成磨齿两种。

  答:齿轮加工的工艺路线一般为:毛坯制造与热处理一齿坯加工一轮齿加工一齿端加工一轮齿热处理一精基准修正一轮齿精加工一检验。

  对8级精度以下的调质齿轮,用滚齿或插齿就能达到要求,对于淬火齿轮,可采用滚(或插)齿一齿端加工一热处理一修正内孔的方案,但淬火前应将精度相应提高一级,或在淬火后珩齿。

  对6~7级精度的齿轮,可用剃一珩齿方案,即滚齿(或插齿)一齿端加工一剃齿一表面淬火一修正基准一珩齿。也可用磨齿方案,即滚齿(或插齿)一齿端加工一渗碳淬火一修正基准一磨齿。剃一珩方案生产率高,广泛用于7级精度齿轮的成批生产中;磨齿方案生产率较低,一般用于6级精度以上或低于6级精度但淬火后变形较大的齿轮。

  a相关范文推荐典型零件的加工1.1 轴类零件加工的工艺分析 (1)轴类零件加工的工艺路线)基本加工路线 外圆加工的方法很多,基本加工路线可归纳为四条。 ① 粗车—半精车—精车 对于一般常用材料,这是外圆......典型零件的机械加工工艺分析[五篇模版]

  第4章 典型零件的机械加工工艺分析 本章要点 本章介绍典型零件的机械加工工艺规程制订过程及分析,主要内容如下: 1.介绍机械加工工艺规程制订的原则与步骤。 2.以轴类、箱体类、......

  论文题目:轴类零件加工工艺及夹具设计 学生姓名: 学 号: 所在院部: 所学专业: 指导老师: 完成时间:2010年03月摘 要 轴类零件是机器中经常遇到的典型零件之一。它在机械中主要用于......

  发动机厂典型零件的结构及其工艺分析 1 汽车发动机缸体加工工艺分析 1.1 汽车发动机缸体结构特点及其主要技术要求 发动机是汽车最主要的组成部分,它的性能好坏直接决定汽车......

  电子科技大学机电 学院 标 准 实 验 报 告 (实验)课程名称典型轴类零件的数控车削工艺与加工 学生姓名: 学号: 指导老师: 日期: 电子科技大学教务处制表 电 子 科 技 大 学 实 验......

  机械制造技术基础课程设计任务书 题目: 姓 名:易涛伟 班 级:A13机械2 学 号:130408331 指导老师:朱从容 日 期:2016-06-25 “杠杆”零件的机械加工工艺规程设计 目录 一、零件图......

  本科毕业设计(论文) 题目:轴类零件的数控加工工艺设计与编程 2013年5月 轴类零件的数控加工工艺与编程 摘要 本次设计是根据被加工轴的技术要求和年生产量,进行机械加工工艺......

  重庆机电职业技术学院 课程设计说明书 设计名称: 机械制造工艺与机床夹具课程设计 题 目:设计“轴件”零件的机械加工工艺 规程(生产纲领:5000件) 学生姓名 专 业: 汽车制造与......